

Edexcel Further Maths AS-level Further Mechanics 1

Formula Sheet

Provided in formula book

Not provided in formula book

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Work, Energy and Power

Work done = Component of force in direction of motion \times Distance moved in direction of force

 $Work\ done\ against\ gravity=mgh$

m – mass of particle
g – acceleration due to gravity
h – vertical distance raised

Work done = Change in kinetic energy = $\frac{1}{2}m(v^2 - u^2)$

Work Energy Principle

Change in the total energy of a particle = Work done on the particle

Kinetic energy

 $K.E = \frac{1}{2}mv^2$

Potential energy

P.E = mgh

Conservation of Mechanical Energy

When no external forces (other than gravity) do work on a particle during motion, the sum of the particle's potential and kinetic energy is constant.

$$\begin{split} KE_{initial} + PE_{initial} &= KE_{final} + PE_{final} \\ \frac{1}{2}mu^2 + mgh_{initial} &= \frac{1}{2}mv^2 + mgh_{final} \end{split}$$

$$Power = \frac{Work \; done}{Time} = Force \times Velocity$$

Momentum and Impulse

 $Momentum = Mass \times Velocity$ $Impulse = Force \times Time$

Impulse-Momentum Principle

Impulse = Change in Momentum = mv - mu

Conservation of Momentum

Total Momentum Before a Collision = Total Momentum After a Collision

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

Elastic Collisions in One Dimension

Newton's law of restitution (*e – coefficient of restitution*)

 $\frac{Speed\ of\ separation\ of\ particles}{Speed\ of\ approach\ of\ particles} = e$

$$\frac{v_b - v_a}{u_a - u_b} = e$$

For the collision of a particle with a smooth plane:

$$\frac{Speed\ of\ rebound}{Speed\ of\ approach} = \frac{v}{u} = e$$

$0 \le e \le 1$	
e = 0	e = 1
Perfectly inelastic collision	Perfectly elastic collision

Loss of kinetic energy due to impact:

$$\left(\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2\right)-\left(\frac{1}{2}m_1v_1+\frac{1}{2}m_2v_2^2\right)$$

